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We investigate the surface tension between coexisting phases of general discrete 
lattice systems. In particular the different phases need not be connected by any 
symmetry, We prove the positivity of the surface tension in the low-temperature 
regime where the Pirogov-Sinai theory of first-order phase transitions is valid: 
finite-range Hamiltonian having a finite number of periodic ground states. We 
give a brief description (with some extensions) of this theory. 
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1. I N T R O D U C T I O N  

The proper t ies  of an  equi l ib r ium macroscop ic  system are  de t e rmined  by  its 
t empera tu re  and  the chemica l  potent ia l s  of its const i tuents .  These  are  the 
sys tem's  t h e r m o d y n a m i c  parameters .  F o r  cer ta in  values  of these p a r a m e -  
ters, compr i s ing  lower -d imens iona l  surfaces in the p a r a m e t e r  space,  the 
system can  exist in more  than  one pure  phase,  e.g., gas or  l iquid. I t  is 
genera l ly  found  tha t  there  is a posi t ive surface tension be tween  these 
phases,  i.e., when two such phases  are  in phys ica l  con tac t  the free energy of 
the sys tem exceeds,  by  a te rm p ropo r t i ona l  to the surface a rea  of contact ,  
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the sum of the free energies of the pure phases. In this paper, we give a 
rigorous mathematical proof of this fact for fairly general lattice systems at 
low temperatures. 

There are several microscopic definitions of the surface tension (see 
Refs. 1, 2, 4, 6, 11, 15), all of which coincide where they can be computed 
exactly, e.g., in the two-dimensional Ising model. (1'z~5) We shall use the 
following definition: given thermodynamic parameters such that we have 
two phases, say, 1 and 2, we take a rectangular box V, of cross section L 2, 
and height M, ]VI = L2M, and impose boundary conditions which lead to 
the presence of phase 1 in the top half of the box and phase 2 in the bottom 
half. The surface tension per unit area is then defined as 

�9 ~2= lira lim 1 q/v ~2) - (1.1) 
L--+oo M-->e~ L 2 2 

~(v 12) is the free energy in 
above while +(v j) is the 
boundary conditions, j = 
system in one of the pure 

V with the mixed boundary conditions described 
corresponding free energy with homogeneous 
1,2; i.e. boundary conditions which produce a 
phases. 

We expect that "r~2 > 0 when 1 and 2 are indeed different phases and 
,i-12 ~ 0 otherwise, e.g., for parameter values at which the system has only 
one pure phase 'r12 should be zero whatever the boundary conditions 1 and 
2 are. These expectations are certainly consistent with the known results 
about the surface tension defined according to (1.1). These are as follows. 

For the Ising model with general ferromagnetic pair interactions in any 
dimension, where 1 and 2 are the plus and minus magnetization states, T12 
is known (13'14) to be nonzero above /3 c and zero below, where /?c is the 
inverse critical temperature defined by the onset of the spontaneous magne- 
tization. In particular, for the two-dimensional Ising model with nearest- 
neighbor ferromagnetic interactions J, we have (z ~s) 

2fiJ + log(tanh flJ), fi > fi~ (1 ,2) 

For a broader class of discrete ferromagnetic spin systems possessing 
high-temperature-low-temperature duality one knows that the limit defin- 
ing "q2 exists and that ~'~2 is monotone in the interactions and strictly 
positive at low temperatures. (7'1 ~) 

In all cases T~2 = 0 at sufficiently high temperatures. (7) 
This definition of surface tension therefore seems appropriate for 

systems with discrete phases. For systems with continuous symmetry the 
situation may however be different. Thus for the plane rotator model 
,1-12 ~---0 at all temperatures. (8) Another definition of surface tension is 
therefore necessary for such systems (see Ref. 8). 
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An important feature of all models for which a nonvanishing surface 
tension has been proven is that the ground states, and therefore the phases, 
are related by a symmetry of the Hamiltonian like the + and - phases of 
the usual Ising model. If we want to study the surface tension in more 
general systems, e.g., between the liquid and the vapor in continuum fluids, 
we need a theory that does not use explicitly this symmetry since it does not 
occur in general. A general theory of first-order phase transitions at low 
temperatures has been constructed by Pirogov and Sinai for discrete spin 
systems with finite-range interactions having a finite number of ground 
states, not necessarily with any symmetry, (~6) (It has been extended to 
quantum field theory (13) and to continuous spins (5) with a finite number of 
ground states). As examples of such systems we have the antiferromagnet in 
a (weak) external field or a general mixture of particles on a crystal lattice 
with arbitrary short-range interactions. In this paper, we show that there is 
a nonzero surface tension between any two phases constructed by the 
method of Pirogov and Sinai. It already follows from Ref. 7 that for these 
systems ~2 = 0 at high temperatures. 

Our result however still leaves open the problem of a direct and 
general relation between the surface tension and the coexistence of several 
phases: i.e., is ~'12 > 0 equivalent to the fact that the boundary conditions 1 
and 2 lead to different thermodynamic phases? We know the answer only 
for the ferromagnet Ising model (3'4) with pair interactions where it is true 
(and also that it cannot be the case for rotators(S)). 

The outline of this paper is as follows: In Section 2, we summarize the 
theory of Pirogov and Sinai. The models that we consider explicitly are 
slightly more restricted than those of Pirogov and Sinai. Their extension is 
discussed in the Appendix using ideas of Holsztynski and Slawny. (12) In 
Section 3 we state our results and give the proofs. They are somewhat 
similar to those of Ref. 7 but we do not use a duality transformation; we 
rely on some estimates on partition functions whose importance was 
emphasized by Imbrie. (13) 

2. PHASE TRANSIT IONS AT LOW TEMPERATURE:  
P I R O G O V - S I N A I  THEORY 

The main problem in the theory of phase transitions is to describe the 
set of pure phases, represented by indecomposable, infinite-volume, Gibbs 
measures. These are obtained by taking the limit of finite-volume Gibbs 
measures with different boundary conditions. (1v'18) We expect that, at least 
at low temperatures, the homogeneous pure phases will be simply related to 
the ground states of the Hamiltonian, i.e, it should be possible to describe 
them as a "dilute gas of excitations" of a particular ground state configura- 



62 Bricmont, Kuroda, and Lebowitz 

tion. Pirogov and Sinai (16'17) take this picture as their motivation and make 
it into a precise mathematical theory of first-order phase transitions at low 
temperatures for a certain general class of lattice systems: in particular they 
do not require any symmetry between the different ground states which is 
essential for all other proofs of phase transitions. 

In the Pirogov-Sinai theory we consider a regular lattice 2U. We 
associate to each site x ~ 7/a the spin variable S x which can take on n 
values, S~ ~ { 1 . . . .  , n }, n finite. We consider systems whose Hamiltonian 
H has finite-range interactions with a finite number of periodic ground 
states and satisfies the Peierls condition. The latter means that the cost in 
energy required to embed a finite piece of one ground state configuration 
into another ground state extending over the rest of the lattice is bounded 
below by the "surface area" between the two different regions. Since the 
number of values, n, which S can take at each site is arbitrary, there is no 
loss in generality in assuming that each site x really stands for a whole cell, 
and that the ground states are the constant configurations given, say, by 
S x =  i for all x E 77 d , i ~ { 1  . . . .  , r )  1 < r~< n. 

A wide class of Hamiltonians of this type (see Appendix on how to 
extend this to the general case) can be written in the following form. (For 
simplicity we consider explicitly the case d = 2 but the results are valid for 
all d > 2.) 

We denote the elementary square of 7/2 consisting of four nearest- 
neighbor sites by p. For each spin configurations Sp in p we consider the 
interaction G(Sp). This includes all two-, three- and four-body interactions. 
We also consider single site energies F(S~). 

For a finite subset V of 7/2 with an area I vI, we define the interaction 
energy for spin configurations S v = { Sx : x ~ V} by 

H v ( S v )  = ~_~ G(Sp )+  ~.~ F(Sx)  (2.1) 
p C V  x @ V  

where the first sum runs over all elementary squares in V. 
We assume the following conditions on F and G: 

F ( S ) = O ,  if S E { 1  . . . . .  r} 

( A - l )  F ( S ) > c > O ,  if S ~ { r + l  . . . . .  n} 

for some r, 1 < r < n, and 

(A - 2) 

"G(sp ) 0, 

a(s ) c > o, 

if S e = i  for some i ~ ( 1 , 2  . . . . .  r}, 

i.e., S x = i  for all x ~ p  

if each S x E { 1 , 2  . . . . .  r} but Sx,-~Sx~ 

for some x 1 and x 2 E p  
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Pirogov and Sinai now study the low-temperature pure phases which 
naturally go over into the ground states, S (0, where S~ 0 = i, all x, 
i E { 1 , . . . ,  r, }, as the temperature goes to zero. To do this let E ( . )  be a 
function on S = (1 . . . . .  n} satisfying the condition 

E ( l ) -  min E(k )<c /8  for each l E { 1 , . . . , r }  (2.2) 
l < k < n  

We may assume, without loss of generality, that minE( l ) - - -0  for l 
( 1 ,  . . . ,  r}, and set/~ = ( / h  . . . . .  /~r) 

tti = E(i), i E (1 . . . .  , r)  (2.3) 

Define now a perturbed Hamiltonian H":  

H~(Sv) = I # ( & )  + y, E(Sx) 
x ~ V  

=Hv(Sv )+  ~ #iNi(Sv) + k E(i)Ni(Sv) (2.4) 
i=1  i = r + l  

where Ni(Sv) = # {x E V; S x = i}. Condition (2.2) assures that any config- 
uration other than the ground states, Sx ~0 = i, i E {1 . . . .  , r}, for all 
x ~ Z 2, has a higher energy, even for the perturbed Hamiltonian (2.4). 

Consider now the space of parameters 

= ( = min /~i = 0 and [/~1---- max [~ti[ (•} 
G ]L (/'s . . . . .  ~r ) : l< i<  r l < k < r  

The theory of Pirogov and Sinai gives the following picture of the 
phase diagram for some small value of c and sufficiently large/3. Let pq be 
the infinite-volume Gibbs state of the system with Hamiltonian (2.4), 
obtained by taking the thermodynamic limit with q-boundary conditions. 
We then have the following: 

(i) There exists a point ~ E G such that the limiting Gibbs states 
P~q -- (q E (1 . . . . .  r}) are all distinct pure phases; 

(ii) there exists an orbit 7~ in G starting from ~ such that the limiting 
Gibbs states Pq (q E (1 . . . .  , r } \ ( u ) )  are all distinct pure phases for each 
/~ E 7u, i.e., there are n - 1 pure phases on 7~; 

(iii) there exists a two-dimensional finite surface 7~ whose bounda- 
ries are given by y~ and Yv such that the limiting Gibbs states Pq (q E 
(1 . . . . .  }\{u,v}) are all distinct pure phases for each/~ E 7uv- 
In general 

(iv) there exists a k-dimensional finite surface ~'A whose boundaries 
are given by ,&\{,) (u E A) such that the limiting Gibbs states Pq (q 
E (1 . . . . .  r)XA) are all distinct pure phases for each /~ ~ ~,,, where 
k = #(A) .  

Also we have G = N a t ( 1  . . . . . .  )~'a. 
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In order to explain the result of Pirogov and Sinai in a bit more detail 
we need some definitions. For a given configuration we call an elementary 
square p regular if all Sx, x Ep are equal and belong to {1,2 . . . . .  r}. 
Otherwise the square is called irregular. Note that 

x~p { = 0, if p is regular (2.5) 
G(Sp ) + F(sx) > c, if p is irregular 

We decompose the set of irregular squares of a configuration into 
connected components. A contour F is defined as a pair; a connected 
component and a configuration on it. This definition is a generalization of 
the Ising model contour. To each contour we associate the ground state 
configuration in the complement of the contour with infinite volume. We 
call such a configuration (necessarily in ( 1 , 2 , . . . ,  r}) the boundary condi- 
tion of the contour. 

Now we introduce contour models. A family of contours is called 
compatible if they are mutually disjoint. We denote by Dq(V) the set of 
compatible families of contours in V with q-boundary conditions. We write 
Fq to indicate that F has q-boundary conditions. 

Note that a real configuration does not always correspond to a family 
of contours in Dq(V) since the latter all have q-boundary conditions. A 
function Fq on the set of contours with q-boundary conditions is called a 
functional if it satisfies 

(i) Fq(F q) > zlFq[ (2.6) 

and 

(ii) Fq is translation invariant (2.7) 

where Irql is the number of squares in F q. 
A contour model is a probability measure on Dq(V) given by 

Pv(~) = f~~ V : Fq )- ' exp[ - ~ Fq(Fqs ) ` 

where 

a = (F q . . . . .  F q) e Dq(V) 

and f~0 is a normalization factor 

a ~  Fq)= E 

For T sufficiently large one can prove the following lemma. Let C be 
the set of maps from contours with q-boundary conditions into N, and F be 
the set of functions from C into R. When g'l and 42 E F, their product 



Surface Tension and Phase Coexistence for General Lattice Systems 65 

41 " 42 is  d e f i n e d  by 

(4, "42)(x) = Y~ 4,(x,)42(x2), x ~ c 
(x~,x2) 

XI'~-X2~ X 

where the addition x~ + x 2 is defined pointwise. For each 4 E F such that 
4(0) = 1 we define 

( -  l) -+~ 
4 T(x) = (1og4)(x) = 2 4g(x) 

n = l  g/ 

where 

= [ 4 ( x ) ,  if x @ 0  40(x) 
0, if x = 0  

Let ~ ~ F be defined by 

,~(x) = [o, 

if x satisfies: 

x ( r )  = I l, if r E ( r q , . . . ,  r~,} 

t 0, otherwise 
for some compatible ( F~ . . . . .  rq~ ) 

otherwise 

Then we have the following: 

I .emma 1 (see Ref. 10). For sufficiently large ,r the following esti- 
mates hold: 

(1) ~ I,~T(x)l < e x p ( -  c~-) 
x ~ O  

where x 9 0 means x (F) ~ 0 for some F containing a given square (called 
0); 

(2) ~~ V : Fq) = eXP[ x~Vq, T (x) ] 

where x C V means x( r )  = 0 unless F C V; 

(3) S(Fq) = lira 1 v'~z d T~ T in ~2~ v : Fq) 

exists when the limit is taken in the sense of Van Hove. S(Fq) is the 
thermodynamic limit of the free energy per unit volume of the contour 
model. 

(4) Moreover, 

[A(V: Fq)[ < exp(-- c~-)[8 V[ 
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where 

A(V: rq) ~- loga~ : rq) - S(Fq)IVI 

Next we introduce the parametric contour statistical sum as follows: 
m 

~'(V:Fq)= Z I Ie-r(~)exp{a ~s IntYq~ } 
{r~}E,~ oq(v ) s= 1 

where Intr~ is the union of the finite connected components of the 
complement of Fq. It is easy to see that 

~a( V : tq) <. exp(a] V])~~ V : Fq) (2.8) 

We define the partition function in V with q-boundary conditions: 

zq(V)  = ~ exp( - fiHr (S v )) (2.9) 
s~ 

Hr = H~(S~) + E G(Sp) (2.10) 

where the sum in (2.9) is over all S~, x ~ V, and the one in (2.10) is over 
the squares that intersect both V and V r and where Sx =q for each 
x ~ V ~. Put 

Zq( V) = exp( fiE(q)[ V[)Zq( V) (2.11) 

Then we have the following relations between the parametric contour 
model and the original one. 

Proposition 1 (See Lemma 4.1 in Ref. 16 and Proposition 2.6 in Ref. 
17). There exists c > 0 and fl0 < oo such that for any/z with I/z[ 4 E and 
fl /> fi0, there exists a family of functions F~ = (F  1 . . . . .  Fr) satisfying (2.6) 
and (2.7) with ~- proportional to fl such that for each q ~ (1 . . . . .  r) 

2q(V) = a~ : Fq) (2.12) 

aq(Fq) = fiE(q) - S(Fq) + c~ (2.13) 

where ct is determined by infaq(Fq)= O. 

Corollary (see Ref. 13), If aq(Fq) = 0 then for al lp ~ {1 . . . . .  r}, 

z (v) 
zq(v---5 < exp(clO vl) 

where c does not depend on fi. 
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Proof of the Corollary. 
we have 

Using definition (2.11) and Proposition 1, 

and by (2.8) 

ZP(V)  _ e-/~(EP-Eq)tVl ZP(V) 
zq(V) zq(v) 

= e_B(Ep_Eq)lv I ~ae(V : Fp) 
a~ : Fq) 

ao(v :F~) 
<~ exp{[ - fi(Ep - Eq) ][V] + aP(Fp )lVl} ao(v  : Fq) 

By (2.13) the right-hand side of (2.14) is equal to 

(2.14) 

a~ :F~) 
exp[ S ( F q ) -  S(Fp)][VI)  aO(v : Fq) 

since aq(Fq) = O. 
Hence we have from Lemma 1.4, 

(2.15) 

z~(v) 
zq(v) - -  < e x p { A ( V : F p ) - A ( V : F q ) )  

~< exp(e-C~)lOV I [] (2.16) 

The main conclusion of the Proposition and of its Corollary is that for 
the ground states satisfying aq(Fq)= 0, one can construct thermodynamic 
Gibbs states having those ground states as typical configurations (see 
Ref. 16). 

We call a ground state q dominant for a given fl and/z if aq(Fq) = O. 

3. SURFACE TENSION 

Assume that for a given /z and fl there is more than one dominant 
ground state. We shall study the surface tension between two phases 
corresponding to two of these ground states; call them 1 and 2. 

Take a box 

VL,M= {xEZ211x,[ ~ M, Ix2l ~ L} 

and put as boundary conditions on V L M either all S x = 1 or all Sx -- 2 or 
S~ = I if x~ > 0 and S x = 2 if x I < O. Z~, Z 2, and Zv ~'2 are the correspond- 
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ing partition functions (see Ref. 11). Define 

Zt~ ,2 1 log (3.1) fi'r"z(L'M) = 2L + 1 (Z,ZZ)'/2 

The surface tension "r~2 is defined as the limit (if it exists) 

1-12= lira lirn "rl,z(L,M ) 
L-+oo M-->oo 

We shall not discuss the existence of the limit (for ferromagnetic 
systems, it was proven in Ref. 11 but only give a lower bound, uniform in L 
and M. 

Theorem 1. There exists a k > 0 such that, for all, /3, ~t to which 
Proposition 1 applies and such that the ground states 1 and 2 are dominant 
for fl,/~, 

I-I,a(L,M ) >/ k 

uniformly in L, M. 

The proof of the theorem is rather simple: we show that in each 
configuration contributing to Z12(L,M) there is a contour, called the 
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interface, separating the two phases. Then we show that this contour has a 
sufficiently small weight. 

First of all, we remark that, if a square is irregular there must be 
another irregular square adjacent to it. Moreover, in the (1, 2) boundary 
conditions, we know that there are two irregular squares intersecting both V 
and V c the one containing the points of coordinates (0, - L ) ,  (0, - L  - 1), 
( -  1, - L) ( -  1, - L - 1) and the one obtained by symmetry with respect to 
the axis x2 = 0. 

For any configuration with the (1,2) boundary conditions, we define 
the interface as the connected set of irregular squares containing these two 
squares. For any interface X we let X be the union of the squares in X and of 
those adjacent to them. The complement of X in VL, M is divided into several 
connected components; one is connected to the part of the boundary with 
boundary conditions S x -- 1, it is called the upper region (one takes x I in the 
vertical direction). The component connected to the boundary with Sx = 2 
is called the lower region�9 The other components are the interior components 
(see Fig. 1). 

Lemma 2. 
k 

(1) ZI'2(L,M) = ~2 exp[ - l 2 - Zw.(x ) BE(X)]zv , Jv~(x)  I I  m, 
X i = 1  

where the sum is over all interfaces, VI(X) is the upper region and V2(X ) is 
the lower one; W~(X), i = 1 . . . . .  k(X), are the interior regions. They have 
some specified boundary conditions mi: 

E(X) = ~, G(Sp)+ ~ (F(Sx )+  E(S~)} 
pc~  x~X 

Note that G(Sp) = 0 for p E X\X. 
(2) For any interface X, the number of squares in X = ]X[ /> 2L + 1. 

Proof. 
(1) Follows immediately from the definition of X. 
(2) This follows from the fact that any connected set of squares going 

from the 1-boundary to the 2-boundary must contain at least one irregular 
square. �9 

Bounds of the Partition Functions. 

Z~, 2 

(zCzr '/2 

From Lemma 2, we have 

E(1)+E(2)2 (X)]} 

�9 [ I I (X)I2(X)I3(X)]  1/2 
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where (X) = the number of sites in X (the number of squares in X is denoted 
by [X[. Note that (X) < 41X]), 

zv2II,=, ~, ~ z m, i ~ ( x ) = z r  '" , k z ~ 
Zr exp[ - f lE(1) (X)]  l=~ Z1 

i= W~ 

�9 k Z m~ 
v~11i=, W, exp[ _ flE(2)(X) ]i~=, 

I2(X) = Z 2, Z 2 H ' k  Z 2  

Z 2 Z 2 

and 

Z 1 . Z 2 
Vi Vz 

/ f i X ) -  ~ 2 
Zv2Zv , 

Proof of Theorem 1. Lemmas 3, 4, and 5 below yield the estimate 

( , )  

z~"2 < E e x p { [ - ~ c ,  + c2 + 8 (B) ] Ix l} ,  
(z~z~.) '/2 

where C 1 > 0 and C 2 > 0 are constants, 
and 8 ( f l ) -~0 ,  as fl--> oo. 

The proof of Theorem 1 then follows from the fact that I~[ > 2L + 1 
(Lemma 2(2)) and the Peierls argument. �9 

Lemma 3. If the value of e is sufficiently small there exists C~ > 0 
for each I/~1 < e such that E(X) - (1/2)[E(1) + E(2)](X) > C11• [ 

Proof. For some c > 0 we have 

E(X) > clX I + min E(i)(X\x) + min E(i)(X) 
l < i < r  l < i < n  

Since minE(i )  = 0 for i ~ { 1 , . . . ,  r} we have 

E(X) - (1 /2 ) [E(1)  + E(2)](X) > cl)t I - (X\)t) E(1) + E(2) 
2 

[ E(1) + E(2) ] 
- min E(i) 

(X) 2 1 < i < 

> c l x l -  (X\x)r - (x)c /8  
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where the last inequality follows from the assumption I/~t < e and Eq. (2.2). 
Now, (~,) < 4IX I and (X\~) < const.IX I. So for e small enough this is larger 
than (c/4)lX[, [] 

I .emma 4. For some c > 0, 

l,(X) < exp[ c(X)] 

12(~.) < exp [ c (~) ] 

Proof We start by observing that, because of the Corollary of 
Proposition 1, 

k z ~  
I I  ~ < exp[c(~.)] 

i = 1  w~ 

We also see that 
k 

Z: > Z~ Z~2 IX Z ~ e x p [ -  flE(1)(X)] 
i = 1  

because the right-hand side is simply the restriction, in the sum of the 
left-hand side [Eq. (2.9)] to those configurations where S x = 1, x ~ X. [] 

Lemma 5. 

I3(X) < exp[8(fl)(?~)] 

where 6(fl)  ~ 0 exponentially as fl -~ oo. 

Proos Because of Proposition 1 and since al(FO = a2(F2)= 0 one 
can write 

I 3 ( X )  = exp[ - f i E ( 1 ) ( V ,  - I12) - f l E ( 2 ) ( V  2 - V , ) ] ~ ( ~ )  

where 

~3(x) = n0(v , :  F,)n~ F2) 

n~ : F,)n~ : F2) 

--oxp[ y y 
L x c  V I x c  V2 x c  V2 x 

by Lemma 1(2). 
We denote the region in ~ (including the interior components of ~) by 

v(~). We denote by R(v.(~)) the region obtained by reflecting v(~,) with 



72 Bricmont, Kuroda, and Lebowitz 

respect to the line x] = 0. Let R()t) = v(X) U R(vOt)). Write 

v , = v  ~ v~=v ~  
v ~ = v,\R(x), d = v,\ v ~ 

and similarly for V=. We have 
v ~ = R(v~ 

We write 

2 o f ( x ) -  E eof(~)+ E 0?(~)-  2 ~?(~) 
x C  V I x C  g 2 x C  V 2 x C  V I 

=[ E q~T(x) J- E q SIT(X)+ E d~IT(X)] 
xc v o xc v~ ~n v~ 

xN vll~q~ 

--[ ~cv ~  xcE ~lr(X)+ ~ v ~  xnv~ 1 
xn v,~ ~q, 

+ [  ~-~ ~f(x) + ~ (pf(x)+ ~ ~] ' (x)]  
k xc vO xc v~ x~ vO +, 

xn v) ~, 

- [  ~ q)f(x)+ ~ q)f(x)+ ~ q)f(x)] 
xc v ~ xc v~ xn v ~  

xN Vii ~-0 

=V 2 2 2 2 ,;(x) 1 t. xc V? xc V~ xc vJ xc Vl I 

+[ 2 ~ ( x ) -  E ~ (x )  
xn V~ xn V~ :~4, 
xn v~r xn v~r 

] 
+ y~ ,?(x)-  E *?(x)/ (3.2) 

xn rz~ xn V~162 J 
x n  VI@(~ x n  Vll v~q~ 

From Lemma l, part (1) we have a bound exp ( -  cfi)(h) on the second 
parenthesis in (3.2) (~- in Lemma 1 is proportional to fl because of 
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Proposition 1). Hence we have 

I3(h) ~< exp[ 6( f i ) lh[]exp(- f i[  E(1)(I V,' ] - I V ; [  ) + E(2)([ V2 ~1 - I  VI'I)]) 

~2~ F1)~~ V; :  F2) 
X 

a~ : F , )a~ : F2) 

< exp[ 6( fi )[XJ ]exp( ([  S ( F , )  - BE(l) ] - [ S(F2) - fiE(Z) ] } I V)[ 

- ( [  S(F,)  - f E ( 1 ) ]  - [  S(F2 )  - f i E ( 2 ) ]  )1 w 'l) 
where 6(fi) and ~ ( f l ) <  exp ( -  cfi) as f l ~  ~ .  The last line follows from 
Lemma 1, part 4. The right-hand side of the above estimate is equal to 
exp[/~(fi)[h]], since S ( F 1 ) -  f iE(l)= S ( F 2 ) -  fiE(2). Hence, we have the 
following estimate for I300: 

/fiX) < exp[ 6(  fi)lXl] 

A P P E N D I X  

We explain how the results of Section 2 can be extended to the more 
general class of models considered by Pirogov and SinaL (16) These include 
essentially all models with a finite set of spin values, finite-range interac- 
tions, and a finite number of ground states. We follow a formulation of 
these models given by Holsztynski and Slawny. (12) 

Let F be a finite set. We have a copy F x of F at each site x ~ 7/d. We 
also have a family of potentials (~A) where A runs over the finite subsets of 
7/d, and q~A : FA = ]-IxEAFx ---> R; the potentials satisfy the following condi- 
tions: 

(i) q~A >/ 0; 
(ii) (~A) is periodic; 
(iii) sup{diamAlq~A=/=0 ) = R < o0; 
(iv) there exists a periodic configuration s E F zd such that q~A(S) 

= OVA. 
(v) # ( s ~ F U l O A ( S ) = 0 V A )  < ~ .  
We call ground states the configurations s such that q~A(s) = OVA. 

Remarks. 
(1) The first condition can always be satisfied by adding a constant 

to ~A, and the third means that we have finite range interactions. 
(2) The fourth condition is apparently restrictive; it seems that we 

cannot allow frustrated models. However, by a redefinition of ~A it is often 
possible to satisfy (iv). For example, the antiferromagnet on a triangular 
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lattice does not satisfy (iv) if we take A = nearest-neighbor bonds and the 
usual interaction, but it does satisfy it if we take for A the elementary 
triangles and ~A = (J/2)~<Ofiisj, where the sum is over the edges of the 
triangles. 

(3) Condition (v) is the most restrictive: There are only finitely many 
ground states. The triangular antiferromagnet does not satisfy (v). How- 
ever, this condition is essential in the Pirogov-Sinai theory. 

(4) In order to make the connection with the models of Section 2 
more transparent, we redefine the model. Let d = 2 and let us partition the 
lattice into translates of a box V 0. 

Consider new spin variables Svo = (Sx)x~ Vo ~ F v~ that take as values 
the set of configurations of all the original spin variables in V 0. Then, if V 0 
is large enough, we have interactions that couple at most four adjacent 
(new) spins, as in Section 1. For d > 2 we shall have 2a-body interactions. 
However, it is not entirely obvious that conditions (A1) (A2) hold for this 
new system. 

Now we explain how one can extend the results of the paper to these 
models. It is clear that since the Pirogov-Sinai theory holds for them, we 
have a natural generalization of Lemma 1, of Proposition 1 and its 
Corollary and of Lemmas 4 and 5. What we need is a suitable extension of 
Lemmas 2 and 3, namely, of the following facts: 

(a) One can define, in each configuration, an interface and the 
minimum "length" of such an interface is proportional to L (or L a- 1 in d 
dimensions). 

(b) Each interface has an energy, with respect to the ground state 
energy, that is proportional to its length. 

We start with the definition of the interface in these more general 
models. 

In Ref. 12, Holsztynski and Slawny show that the models satisfying 
(i)-(v) above fulfill the following Peierls condition: let, for each natural 
number N, N ( x ) =  {y E 7/d IIx -Y l  < N}. Given a configuration s, a 
square N(x )  is called irregular of the restriction of s to N(x )  does not 
coincide with the restriction of some ground state to N(x) .  BN(S ) is the 
union of the set of irregular squares. Pe&rls' condition states that, for each 
N large enough, there exists P > 0 such that, if s coincides with a ground 
state outside V, 

N, ~A(S) > 01BN(s)I (A.1) 
AN Vv~q, 

It was shown in Ref. 12 that under the assumption (i)-(v) on the 
potentials, Peierls' condition holds. Actually, the proof of Ref. 12 extends to 
the case where V = VL, M and s coincides with ground state 1 in the upper 
half of V[~,M and with ground state 2 in the lower half. 
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Now, BN(S ) can be decomposed into connected components called 
contours; the inlerface of a configuration with the (1,2) boundary condi- 
tions is the contour connected to V c. The Peierls condition (A.1) implies 
that every interface produces an energy proportional to its length (i.e., the 
number of squares contained in it). This is point (b) above. It remains to 
show point (a), namely, that every configuration has an interface that is 
long enough (at least of length L, or L a- l in d dimensions). This follows 
from the fact that there cannot be "holes" in the interface; indeed consider 
any chain of squares which connects the upper half of V c and the lower L,M 
half of V c . .  L,M : ( N(xo),N(xl),  . ,  N(XK) }, where N(xo) is in the upper half 
of VCL,M, N(XK) is in the lower half of V CL,M, and Ix i - x i +  1[=1 i = 0 ,  
1 . . . . .  K - 1 .  

Let N be so large that all ground states are uniquely determined by 
their restriction to N(x). Then there must be at least one x j j  E { 1 . . . . .  K )  
such that N(xj) is irregular. It is easy to see that this implies that the 
minimal length of an interface is proportional to L. 
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